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Abstract. A finite set can be supplied with a group structure which can then be used to
select (classes of) differential calculi on it via the notions of left-, right- and bicovariance. A
corresponding framework has been developed by Woronowicz, more generally for Hopf algebras
including quantum groups. A differential calculus is regarded as the most basic structure needed
for the introduction of further geometric notions like linear connections and, moreover, for the
formulation of field theories and dynamics on finite sets. Associated with each bicovariant
first-order differential calculus on a finite group is a braid operator which plays an important
role for the construction of distinguished geometric structures. For a covariant calculus, there
are notions of invariance for linear connections and tensors. All these concepts are explored
for finite groups and illustrated with examples. Some results are formulated more generally for
arbitrary associative (Hopf) algebras. In particular, the problem of extension of a connection on
a bimodule (over an associative algebra) to tensor products is investigated, leading to the class
of ‘extensible connections’. It is shown that invariance properties of an extensible connection
on a bimodule over a Hopf algebra are carried over to the extension. Furthermore, an invariance
property of a connection is also shared by a ‘dual connection’ which exists on the dual bimodule
(as defined in this work).

1. Introduction

Non-commutative geometry (see [1], for example) replaces the familiar arena of classical
physics, a manifold supplied with differential geometric structures, by an associative algebra
A and algebraic structures on it. According to our point of view, the most basic geometric
structure in the framework of non-commutative geometry is a ‘differential calculusdon
(see also [2]). It allows the introduction of further geometric notions like linear connections
and, moreover, the formulation of field theories and dynamics on finite sets.

Though non-commutative geometry is designed to handle non-commutative algebras,
non-trivial structures already arise on commutative algebras with non-standard differential
calculi (see [3] and references given therein). A commutative algebra of particular interest
in this context is the algebra of functions on a finite (or discrete) set. A differential calculus
on a finite set provides the latter with a structure which may be viewed as a discrete
counterpart to that of a (continuous) differentiable manifold [4, 5]. It has been shown in [4]
that (first-order) differential calculi on discrete sets are in correspondence with (di)graphs
with at most two (antiparallel) arrows between any two vertices. This relation with graphs
and networks suggests applications of the formalism to dynamics on networks [5] and the
universal dynamics considered in [6], for example.
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A finite set can always be supplied with a group structure. The left and right action of
the group on itself can then be used to distinguish certain differential calculi and geometric
structures built on it [7-9]. A finite group together with a (bicovariant) differential calculus
may be regarded as a ‘finite Lie group’. The purpose of the present paper is to develop
differential geometry on such spaces. In discrete (field) theories, discrete groups may
appear as gauge groups, as isometry groups, and as structures underlying discrete spacetime
models. For example, the hypercubic lattice underlying ordinary lattice (gauge) theories
can be regarded as the abelian gré@ip(respectivelyZ}, with a positive integetv, for a
finite lattice). Lattice gauge theory can be understood as gauge theory on this group with
a bicovariant differential calculus [10]. Another example which fits into our framework
is the two-point space used in [11] to geometrize models of particle physics (see also
[8,9,12]). In this model the grou@, appears with the universal differential calculus
(which is bicovariant).

Section 2 introduces differential calculus on finite groups and recalls the notions of left-,
right- and bicovariance (using the language of Hopf algebras). For each bicovariant first-
order differential calculus on a finite group and, more generally on a Hopf algebra, there is an
operator which acts on the tensor product of 1-forms and satisfies the braid relation [7]. For
a commutative finite group this is simply the permutation operator, but less trivial structures
arise in the case of non-commutative groups. The generalized permutation operator can be
used to define symmetric and antisymmetric tensor fields. All this is the subject of section 3.
Linear connections on finite groups and corresponding invariance conditions are considered
in section 4. Of particular interest are linear connections which can be extended to tensor
products of 1-forms. We explore the restrictions on linear connections which arise from
the extension property. Appendix A more generally addresses the problem of extending
connections on twod-bimodules, with.A any associative algebra, to a connection on their
tensor product. In section 5 we introduce vector fields on finite groups and briefly discuss a
possible concept of a metric. In order to formulate, for example, metric-compatibility of a
linear connection, the concept of the ‘dual’ of a connection is needed and the problem of its
extensibility (in the sense mentioned above) has to be clarified. This is done in appendix B
for an arbitrary associative algebrd and a connection on ad-bimodule. An example
of a non-commutative finite group is elaborated in section 6. Section 7 contains further
discussion and conclusions. Appendix C recalls how coactions on two bimodules extend to
a coaction on their tensor product. It is then shown that extensions of invariant connections
are again invariant connections and that invariance is also carried over to the dual of a
connection. In appendix D we briefly explore the concept of a ‘two-sided connection’ on a
bimodule. Appendix E deals with invariant tensor fields on finite groups. Although in this
work we concentrate on the case of finite sets supplied with a group structure, in appendix
F we indicate how the formalism can be extended to the more general case of a finite set
with a finite group acting on it.

Though originated from the development of ‘differential geometry’ on finite groups,
some of our results are more general, they apply to arbitrary associative algebras,
respectively, Hopf algebras. We therefore decided to separate them from the main part
of the paper and placed them into a series of appendices (A-D).

2. Differential calculi on finite groups

Every finite set can be supplied with a group structure. If the nundbesf elements
is prime, then the only irreducible group structureZg, the additive abelian group of
integers moduloN. Differential calculi on discrete groups have been studied in [8,9].
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More generally, differential calculus on discrete sets has been developed in [4, 5].

Let A be the set ofC-valued functions on a finite s&&. With each elemeng € G
we associate a functios, € A via e,(g') = &;,¢. Thenegey = 8, e, andy e, =1
where 1 is the unit ind. Every functionf on G can be written a = > _; fqe, With
fe € C. Choosing a group structure @, the latter induces aoproductA : 4 - A® A
viat

A(f)(g. &) = f(gg). (2.1)
In particular,
Aleg)) =Y en ® ey1y. (2.2)
heG

A differential calculuson A is an extension of4 to a differential algebra2, d). Here
Q = Pr,Q is a graded associative algebra wh&r® = A. Q"1 is generated as an
A-bimodule via the action of a linear operator @" — Q'+1 satisfying ¢ = 0, d1= 0,
and the graded Leibniz rule(@y’) = (dp)¢’ + (—1) ¢ dp’ whereg € Q.1

It is convenient [4, 9] to introduce the special 1-forms

o =eoley (g#8) €,:=0 (2.3)
and the(r — 1)-forms

€g1..ngr = €g1,82€g2.83 - - €g 1,8, (2.4)
They satisfy
€418 Chihy = Og, h1€ou.ongripaeihy (2.5)
The operator d acts on them as follows:
deg,.... = Z[eh,& ----- & T Coihgnng T Corgahgag — (D g gl (2.6)
heG

If no further relations are imposed, one is dealing with the ‘universal differential calculus’
(Q2,d). Thee,, , with g # g1 (i =1,...,r—1) then constitute a basis ov€rof ' ~1
for r > 1 [4]. Every other differential calculus o6 is obtained from as the quotient
with respect to some two-sided differential ideal. Up to first order, i.e. the level of 1-forms,
every differential calculus o is obtained by setting some of tleg ,, to zero. Via (2.4)
and (2.6) this induces relations for forms of higher grade. In addition, or alternatively, one
may also factor out ideals generated by forms of higher grade. Every first-order differential
calculus onG can be described by a (di)graph the vertices of which are the elements of
G and there is an arrow pointing from a vertgxto a vertexg’ iff ¢, , # 0 (see [4] for
further details).

A differential calculus onG (or, more generally, any Hopf algebrd) is calledleft-
covariant [7] if there is a linear map\o: : Q' — A ® Q! such that

Aai(fof') = A(f)Aq(@)A(f) Vi fleA et (2.7)
and
Agiod= (id®d)o A. (2.8)

t Here we make use of the fact that a group defines a Hopf algebra. This formalism is adequate, in particular,
if one has in mind to generalize the structures considered in the present work to non-commutative Hopf algebras
like quantum groups.

i In[5] a discrete set together with a differential calculus on it has been adibecete differential manifoldThis

notion was motivated by a far-reaching analogy [4] with the continuum case wWher¢he algebra of differential

forms on a manifold and d the exterior derivative.
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As a consequeng¢e

Aqi(eg o) = Zeha ® eng.ng'- (2.9)
heG

Hence, in order to find the left-covariant differential calculi@nhwe have to determine the
orbits of all elements ofG x G)" where the prime indicates omission of the diagonal (i.e.
(GxG)Y =(GxG)\{(g, g | g € G}) with respect to the left actiofg, g') — (hg, hg’). In
the graph picture, left-covariant first-order differential calculi are obtained from the universal
one (which is left-covariant) by deleting corresponding orbits of arrows.

For a left-covariant differential calculus, there are left-invariant ‘Maurer—Cartan’ 1-
forms [8, 9]

0% = engn = Cng = ehng Agi(0%) = 1® 65. (2.10)
heG

Here we have introduced a summation convention. If an index is underlined, this means
summation over all group elements. Note that= 0 according to the above definition.
Furthermore, the Maurer—Cartan forms with# ¢ are in one-to-one correspondence with
left orbits in (G x G)'. All left-covariant differential calculi (besides the universal one)
are therefore obtained by setting some of #ie(of the universal calculus) to zero. The
non-vanishing¢ then constitute a left (or rightd-module basis fo2! since

ehg = enf h = Ggflheg. (2.11)
As a generalization of the last equality we have the simple commutation relations

[0 =0°R,f (2.12)
whereR, denotes the action af on .4 induced by right multiplication, i.e.

(Ref)(h) := f(hg) (Vf €A ReRi = Rgh- (2.13)

The equation (2.11) can be used to prove the Maurer—Cartan equations

do" = —C", ,0%6¢ (2.14)
with the ‘structure constants’

Cly g i= =8y — 8y + 80, (2.15)
These have the property

C3M8 g ading = CEgr g VheG (2.16)

where ad denotes the adjoint action®@fon G, i.e. adh)g = hgh™.
A differential calculus onG is calledright-covariant if there is a linear map,: A :
Q! > Q' ® A such that

aA(fo 1) = AHaA@AS) gAod=(d®id) o A. (2.17)
This implies

QlA(eg,g’) = Zegh’g/h ® ép-1. (218)
heG

T Without refering to the Hopf-algebraic language, left-covariance of a differential calculus basically means
Lg,d = dL, whereL, is the action onA induced by the left multiplication of elements 6f by g, see (2.23).
ThenLgep iy = €,-1, ,-1; Which corresponds to (2.9).

i All following formulae and statements which do not make explicit reference to a coaction are actually valid
without the assumption of left-covariance. The second formula in (2.10) is based on it, however, and it is this
invariance property which justifies our definition in (2.10).
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For a right-covariant differential calculus, there are right-invariant Maurer—Cartan 1-forms,

w8 = egpp o A@®) =® ®1 (2.19)
which satisfy

ehg = eno = a)hgfleg (2.20)

do" = —C"; el (2.21)
and

fof =L, f (2.22)

where L, denotes the action af on A induced by left multiplication,
(Lo () = f(gh) (VfeA LoLy = Lyg. (2.23)

A differential calculus ishicovariant if it is left- and right-covariant. Then, in the case
under consideration,

aA0F) =0 R ¢y (2.24)

It follows that bicovariant calculi are in one-to-one correspondence with unions of conjugacy
classes different fronfe}. Obviously,

pi=08 =0t =eyy (2.25)

is abi-invariant 1-form.
In the following we list some useful formulae. Fgre A we find

df =[p, f1= (/)08 = (rg ot (2.26)
where

bof i=Reaf — f ref = Lorf — f. (2.27)
Using (2.23) and (2.13), it is easy to check that

Loly = Cy o) rerg = Clg o (2.28)
The 1-forms9® andw? are related as follows:

6% = e,?dM8 w® = e, s, (2.29)

In the following sections we restrict our considerations to differential calculi which
are at least left-covariant. As already mentioned, in this case the set of non-vanishing
left-invariant Maurer—Cartan 1-form&? is a basis ofQ! as a left.A-module. It is then
convenient to introduce the subsét = {g € G|9#8 # 0} of G. If not said otherwise,
indices will be restricted tas in what follows. This doesot apply to our summation
convention, however. Underlining an index still means summation over all elemegts of
though in most cases the sum reduces to a sum Gvéaut see (3.2) for an exception).
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3. The canonical bimodule isomorphism for a bicovariant differential calculus
For a bicovariant differential calculus there is a unique bimodule isomorplism
Qe Q' - Q' ®4 Q! such that
(0 Ruw)=w®460 (3.2)

for all left-invariant 1-formsp and right-invariant 1-formso [7]. We haveo (p ® 4 p) =
0 ®4 p sincep is bi-invariant. Furthermore,

o (0% @4 gg') =0 (0% @4 ehwad@g,)
= 0 (0%e), ®4 W)
= €40 (0% ® 4 W)
— eﬁgwad@)g' ®4 6%
= eﬁgeﬁfead@il@g/ ®468
_ ehgad(g‘l)g' ®40° 3.2)
which implies
o (08 ®40%) = 0248 @, 8. (3.3)
In particular, o (68 ®4 08) = 6% ®4 0%. More generally, it is possible to calculate an
expression for higher powers ef By induction one can prove that
o108 @ 4 6") = 02T @ gade s (3.4)
o2 (0% @40 = gadethY"g ®.4 gads~thy'h (3.5)
for all » > 1. With the help of the last formula one arrives at the following result.
Proposition 3.1 For a finite groupG and a bicovariant first-order differential calculus on
it, the associated bimodule isomorphisnsatisfies
2340 = id (3.6)
where|ad(G)| denotes the number of elements of @y := {ad(g)|g € G}, the group of
inner automorphisms of;.

Proof. Fora € ad(G) let (a) denote the cyclic subgroup of @) generated by:. Since
adG) is a finite group,|(a)| is finite anda®! = id. Furthermore,(a)| is a divisor of
|ad(G)| by Lagrange’s theorem. Now (3.6) follows from (3.5). O

We define theorder of o as the smallest positive integer such thate” = id and
denote it ago|. The previous proposition then tells us that < 2| ad(G)|. Our next result
shows that, in general, equality does not hold. For the symmetric griSupgth n > 3
one finds thato| < 2|adS,)|.

Proposition 3.2 For the symmetric grous,, n > 3, with the universal first-order
differential calculus, we have
n—2
—k
o] = 2n " (3.7)
kzlgcdba(n—l)...(n—k+l),n—k]

where gcdf, ¢'] denotes the greatest common divisor of positive integeaad ¢'.

1 Another way to describe the number on the right-hand side is the following. Write all the factors 2 of
|S,| = n! as products of powers of primes. Thén| is twice the product of all different primes, each taken to
the power which is the highest with which the prime appears in the set of factors, 2.



Non-commutative geometry of finite groups 2711

Proof. Forn > 2 the centre ofS, is trivial [13] and the group of inner automorphisms
is therefore isomorphic witls, itself. Every elementg € S,, ¢ # e, can be written
as a product of disjoint (and thus commuting) cycles. Hegée= e with ¢ =

n ]_[Zj(n —k)/gedp(n — 1)...(n — k + 1),n — k]. By construction,¢ is the smallest
positive integer with the property’ = e for all g € S,,, since for each divisor of there is

a cyclic subgroup of order equal to this divisordy (given by a cycle of length equal to
the divisor). For the universal differential calculus §p, the statement in the proposition
now follows from (3.4) and (3.5). |

For a bicovariant differential calculus, it is natural to consider the following
symmetrization and antisymmetrization operators acting26m 4 Q?,
S = J(id+0) A= 3(id—o0). (3.8)

In generalo? # id, so that these are not projections. It is therefore not quite straightforward
how to define symmetry and antisymmetry for an elemert Q! ® 4 Q1. We suggest the
following notions,

« is w-symmetric iff aeSQre Q) =ims

a is s-symmetric iff S) =«

o is w-antisymmetric iff o€ AQ'®@4QH)=imA

a is s-antisymmetric iff Al@) =«
where ‘w’ and ‘s’ stand for ‘weakly’ and ‘strongly’, respectively Examples are treated

in section 6.1 and appendix E. The notions of s-symmetry and w-antisymmetry are
complementary in the following sense.

Proposition 3.3 For each bicovariant differential calcul@son a finite groupG, the space
Q! ® 4 Q! decomposes into direct sums

Qe Q' =kerA@imA=kerS®imS. (3.9)

Proof. In order to show the first equality, it is sufficient to prove that Aenim A =0
since Q! @ 4 Q! is a finite-dimensional vector space ov@rand A a linear map. Let
be an element of keA Nim A. Theno(¢) = ¢ anda = (o — id)(B8) with an element
B e AQ'®4 QY. Using (3.6) we obtain

2ladG)|-1 2ladG)|-1
0= (02D —id)(p) = ( > o")(o —id)(B) = ( > a")(a) = 2|adG)le.

k=0 k=0
Hence,a = 0. In the same way, the second equality in (3.9) is verified with the help of
0= (CIF )Mok (o +id). 0

We note that satisfies the braid equatibn
(id®o) (o Rid)(id®o) = (¢ ® id)(ild ®o) (0 ® id) (3.10)

(see also [7]). In [7] Woronowicz implemented a generalized wedge product by taking
the quotient ofQ! ® 4 Q! with respect to the subbimodule of s-symmetric tensors, i.e.

1 The conditionsS(«) = « and A(«) = « are equivalent te € ker A anda € ker S, respectively.

i The fact thato satisfies the braid relation has the following origin. Détbe a vector space anét a map

V — EndV). Themaps : V®V — V@V defined bys (x ® y) := y ® ®,x then satisfies the braid equation if
and only if &, o &y = ®g,, 0 O, forall x, y € V. In particular, if V is the group algebra of a (not necessarily
finite) groupG, then® = ad satisfies this equation.



2712 K Bresser et al

Q? = (Q'®.4QY)/ ker A which can be identified with the space of w-antisymmetric terjsors
Then ¢ = p2 = 0.

Example We consider a set of three elements with the group stru@ureThe Z3 left-
covariant first-order differential calculi on this set are then represented by the graphs in
figure 1.

Figure 1. The digraphs which determine all left-covariant first-order differential calculZzgn

The last of these graphs has no arrows and corresponds to the trivial differential calculus
(where d= 0). For a commutative group, as in the present example, bicovariance does not
lead to additional conditions. Since left- and right-invariant Maurer—Cartan forms coincide
for a commutative group, the mapacts on left-invariant forms simply as permutation, i.e.

o (0% ®40%) = 0% ®,46%. In particular,o? = id in accordance with proposition 3.1 and
the wedge product determined byis therefore the ordinary one for left-invariant 1-forms,
though we still do not have anticommutativity of the product of two 1-forms, in general.

More complicated maps with o2 # id arise from a non-commutative group structure.
In section 6 we elaborate in some detail the case of the symmetric gpup

4. Linear connections on a finite group

Let A be an associative algebra afida differential calculus on it. Aonnectionon a left
A-moduleT is a mag

V:l - Qleul (4.1)
such that

V(fy)=df @4y + fVy VfeA yel (4.2)
[15]. A connection orl" can be extended to a m&p® 4 - Q@4 I via

V(pW) = (dp)¥ + (1) VWV (4.3)

for g € Q" and¥ € Q ® 4 I'. ThenV?, which is a left.A-module homomorphism, defines
the curvature of the connection.

In the following we consider the particular case whére= Q!, the space of 1-forms
of a differential calculus opd. A connection is then called lanear connection It is a map

1 Alternatively, one may think of implementing a generalized wedge product by taking the quotient with respect
to w-symmetric tensors. However, this turns out to be too restrictive, in general (see section 6.1 and the example
in appendix E). Moreover, one may also consider corresponding (anti)symmetry conditions obtained from those
given above by replacing by some power ot and use them to define a wedge product. These possibilities
reflect the fact that there are several differential algebras with the same space of 1-forms. These define different
discrete differential manifolds [4,5]. The choice made by Woronowicz is uniquely distinguished by the property
that bicovariance extends to the whole differential algebra, see theorem 4.1 in [7].

1 Similarly, a connection on a righti-module is a mapv : I' — ' ® 4 Q1 with V(yf) = (V) f +y Q4 df.

A left (right) module over an associative algehahas a connection with respect to the universal first-order
differential calculus if and only if it is projective [14] (see also [15]).
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V: Q- Qo4 Q. Thetorsion of a linear connection may be defined as

T=d—-moV (4.4)

wherex is the projectionQ! @ 4 Q' — Q21.
If @ has a left4-module basi®’,i = 1,...,n, the action of a linear connection on a

1-form ¢ = ;6" (summation convention) is given by

Vo = Dg; ®46' (4.5)
where we have introduced

Dy; :=dy; — ¢j0’; (4.6)
with connection 1-forms

o'y =T"6* 4.7)
defined by

VO = —o'; @467 (4.8)

Extending a linear connection a2! to a connection o2 ® 4 Q1,

V¥ = -Q ®467 (4.9)
defines curvature 2-forrfidor which we obtain the familiar formula

Q; = do'; + o' 0. (4.10)

Remark Under a change of basié — a';6/ wherea is an invertible matrix with entries in

A, we have the tensorial transformation properigs> ¢; (aYH/; andDg; — Dy; (@a™by/;.

For the connection 1-forms and the curvature 2-forms one finds the familiar transformation
laws '; > a'yof; (@Y + alid(aH¥; and QF; > @' QK (a7h);. It should be noticed,
however, that the componenk$;; of the 2-formsQ’; with respect to the generatat$y’ of

Q2 do not transform in this simple way if functions (here the entries of the transformation
matrix a) do not commute with all 1-forms (here the basis 1-fodh) as in the case of a
differential calculus on a finite st

Now we turn to the special case of a left-covariant differential calculus on a finite group.
As a left A-module basis we choose the set of left-invariant Maurer-Cartan 1-féfms
Except where stated otherwise, indices are restricte@.téor ¢ = ¢,6£ one finds

Vo = Ry 19y — onUy )05 @ 46¢ (4.11)
where
h . h h
Ul i=080+T" . (4.12)
As a consequence,
Vo =06 Rerpy = Ul 4. (4.13)

t This pretends that there should be a kind of symmetry with respect to the two factors of the tensor product.
From the general formula (4.1) it should be clear that the two factors play very different roles.

1 For a bicovariant first-order differential calculus on a Hopf algebra, the choice made in f7]=sA, see
section 3.

§ More precisely, these are the components of the curvature with respect to the (arbitradgietiule basi®’.

| On the other hand, it is precisely such a change of the ordinary transformation law for components of forms
which underlies the derivation of the lattice gauge theory action in [10].
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Left-invariance ofV (see appendix C) is equivalentlfg,’g,, € C. If the differential calculus
is bicovariant, evaluation of the right-invariance condition (see appendix C) then lgads to

T adie =Ty V8.8.8" €G.VheG. (4.14)
For a left-invariant connectidn

QFy = (D8 y T8 gy — CE T8 g )0 0" (4.15)
Applying T to the left-invariant basis, we find

TO") ="y, — C"y 0565 . (4.16)

The constant€”, , are those defined in (2.15).
Example 1 For a bicovariant (first-order) differential calculus,

Vo i=p®sp—0(p®ap) (4.17)

defines a linear leftd-module connection. Here is the canonical bimodule isomorphism.
For this connection the Maurer—Cartan 1-foréifsare covariantly constant, i.&°6¢ = 0.
As a consequence, the connection is bi-invariant, the curvature vanishes and the torsion is
given by T(0") = —C", 0868 = do".

The connection (4.17) can be generalized to a family of bi-invdjiteft .4-module
connections,

lo|—1
VOt Dg = p @4 — Y 10" (9 @4 P) (4.18)
n=0
where|o| is the order ofs (see section 3) and, € C|. It includesv® " := V©--0D,

With respect to thls connection the right-invariant Maurer—Cartan 1-farhere covarlantly
constant, i.eV° ¢ = 0, and the curvature also vanishes. The two connecfithand
Ve~ provide us with analogues of ther)- and (—)-parallelism on Lie groups (see [17],
section 50). Correspondimight .4-module connections with these properties are given by
o1oV® ando o Vo '

Example 2 For a bicovariant differential calculus with the (generalized) wedge product
as defined by Woronowicz (see section 3), the torsion and the curvature of a left-invariant
linear (left.A-module) connection are given by

TO") = 3(M gy — Madgree — Cop + Cladgrgs)0% @4 05 (4.19)
Qf, = %[rgg,,&rg”g,@/ _ rgg,/’&,rﬁ”g,.ad@ﬁ + (Cg,ad(@’)k,ﬁ’ — cg”,l,,&)rgg,,g,,]gh ®.4 6"
(4.20)

using 22 = im A (cf section 3) and (3.3). The condition of vanishing torsion for a linear
connection is

h h h h
Mg — Flad(g)g’,g =Clg = Cladg)gs = 5 + Sa(Kg)g (4.21)
which, for a commutative group, reducesité, , = I'", ,.

1 Note that, for a bicovariant differential calculus,(afg € G wheneverg € G, h € G.

1 For the universal differential calculus this impli@s= 0 < U,Uy = Uy, WhereU, := (U" ). The curvature
thus measures the deviation of the matricgsfrom being a representation of the groGp

§ The 1-formp and the bimodule isomorphismare bi-invariant [7]. The bi-invariance of the connections (4.18)
then follows from proposition C.3.

| More generally, if ¥ is any left A-module homomorphism2! @4 @ — Q! @4 @1, then V¥yp =
P49 —V(p ®4 p)Iis a linear connection, see also [16].
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Example 3 For a left-covariant first-order differential calculus,
Mg =Cley (4.22)

defines a left-invariant linear connection which we call theonnection Independent of

the continuation of the first-order calculus to higher orders, for this connection the torsion
vanishes. For a bicovariant differential calculus, #ieconnection is bi-invariant as a
consequence of (2.16).

In appendix A we introduced the notion of an ‘extensible connection’. An extensible
linear connection induces a connection on the tensor praeit®t, 2! which then enables us
to construct ‘covariant derivatives’ of tensor fields. In the following we elaborate this notion
for the case of linear connectioRs: Q! — Q'® 4 Q! on a finite groupG with a bicovariant
(first-order) differential calculus (with space of 1-forr@). Using proposition A.2, the
following characterization of such connections is obtained.

Proposition 4.1 A linear connection on a finite group with a bicovariant (first-order)
differential calculus is extensible if and only if there exist bimodule homomorphisms

v:Qle.ol— Qte, ot W:ol—> Qley ot (4.23)
such that

Vo =Vip+V(p®ap)+ W) (4.24)
whereV? denotes the connection (4.17) apd= 6.

It remains to determine the most general form of the bimodule homomorphisarxl
w.

Proposition 4.2 Let (2!, d) be a left-covariant first-order differential calculus on a finite
group.
@ AmapV : Qe Q! - Q@4 Qs a bimodule homomorphism if and only if
VO ®a09) = Y VL0 @400 Vg.g' € G (4.25)
ni'eG
hh'=g'g
with V&5 e A.
(0) AmapW : Q! - Q' ®4 Q' is a bimodule homomorphism if and only if

W) = > WEL0" @0 vge G (4.26)
hh'eG
hh'=g
with W;{,, € A.

Proof. The proofs of (a) and (b) are essentially the same. We therefore only present the
proof of (b). Since{6% ®46¢|g, g € G} is a left A-module basis of2! ® 4 Qt, W(69)
must have the form

W) = Y Wi,0" Q0"

h.h'eG

with coefficients inA. This extends to a lefd-module homomorphism. The condition for
W to be also right4-linear is

0=WO)f — (R IWO) = Y (Ry-1Ryrf — R YW 0" @46

hieG
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forall g € G and all f € A. Itis then sufficient to have this property for all generatays
(¢' € G) of A4, i.e.

> (eqnw — g Wi 0" ®460" =0.

h'eG
This is equivalent ta¥; ,, = 0 whenevemh' # g. O
According to the two propositions, an extensible linear connectida given by
Vot = Y VESO  @ue"+ Y WE,0" @6 (4.27)
g’,h,h’eé h,h’eé
hh'=g'g hh'=g
taking into account thaV?6¢ = 0. This means
_W/f,h' hh' =g
P = —VEMST  forg =hi'gteG (4.28)
0 gt ¢ G U {e}

from which we observe that there are restrictionsWao be extensible iff there are products
hh'g & GU{e} for h,h', g € G.

Example 4 For G = Z4 = {e, a, a?, a3} and G = {a, a?} we find the restrictions
re, =r% ,=0 (4.29)

for a linear connection to be extensible. This excludes@hmonnection of example 3.

5. Vector fields, dual connections, and metrics on finite groups

Let 2 be a left-covariant differential calculus on a finite graip By X we denote the dual
A-bimodule ofQ?! with duality contractiong, X) for ¢ € Q! andX € X (see appendix B).
The elements oft’ act as operators od via

Xf = (df, X). (5.1)

The (non-vanishing) Maurer—Cartan forrd§ constitute a basis of2! as a left or right
A-module. Let{¢,|g € G} be the dual basis. Then

G f = (dfs b)) = (Enf)O", L) = b, f (5.2)

shows that, = ¢,. In the same way one verifies that|g € G} is the dual basis ofw*}.

Elements ofX can now be written as

X =4, X (5.3)
whereX f = (egf)X; As a consequence of (2.12),
(0", (Rof)lg — Ly - [) = (0"(Ryf). Lg) — 82 f = (Ry1o /)(0". £g) =8 f =0 (5.4)
so that

(Ref)lg =Ly - f. (5.5)

By duality (see appendix B) a linear leff-module connectiorV induces a right4-
module connectiorV* on X such that

Vi, = 0, ®4 0y (5.6)
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wherew?, are the connection 1-forms with respect to the bésigcf (4.8)). V* extends
to a mapX ® 4 2 — X ®4 L such that

Vi(xe) = (V*x)¢ + x do (5.7)
for x € X ® 4 Q andg € Q. Regarding the canonical form

Ei=l, ®40% (5.8)
as an element ot ® 4 2, we find

V'E = V'l @4 0% + £y @4 d0F = £, ® 4 DOS (5.9)
with

DO = do* + 00" =: ©5. (5.10)

This is another (equivalent) expression for the torsiorivof Furthermore, Sinc&/*E is
again an element ot ® 4 2, we can applyv* another time. This yields

(V9)?E = £, ®4 DO* (5.11)
where
DO =dOf + wfyOf = D?0¢ = Qf 0% (5.12)

which resembles the first Bianchi identity of classical differential geometry. We also have
an analogue of the second Bianchi identifyQ¢, = 0.

As ametric we may regard an elemegte X ® 4 X’ with certain propertigs In terms
of the basisl, ® 4 £, We haveg = £, ® 4 Ly - g%¢ . A metric is calledcompatiblewith a
connection ont’ ® 4 X if g is covariantly constant.

Example For a bicovariant differential calculus, the canonical bimodule isomorphism
has a ‘duals’ : Q' ®4 X — X ®4 Q! (cf (B.5)). From

0%, 0" (0" @4 L) = (0(6° ®46"), L) = (65" ©,46%, ¢,)

=08 S8 = (0% 0, @4 0% ") (5.13)
we deduce
o' (0" @uly) =L, ®40° "8 (5.14)
For the connectiorv? defined in (4.17) the dual connection (see appendix B) is given by
VIX=X®up—0'(pQaX) (5.15)

and has the property? ¢, = 0. It is extensible and we obtain
Vg g =1L, ®aly-dgss (5.16)
so thatg is compatible withvg' if and only if dg#¢ = 0§.

T We may also regar@ as an element of the product modute® 4 Q1. A connectionV on Q! together with its

dual V* can then be used to defingX ®4 ¢) := (V*X) ®.4 ¢ + X ®4 Vo which impliesVE = 0. This makes
sense thouglV is not a left or right.A-module connection oft’ ® 4 Q.

1 A reality or hermiticity condition requires an involution, an extra structure which we leave aside in the present
work. Less straightforward is the implementation of a notion of invertibility. Note that we could also think of
a metric as an element @' ® 4 Q1. Then appendix E provides us with examples. See also the discussion in
section 7.

§ The equation ¢ = 0 for f € A does not necessarily imply € C. It depends on the differential calculus what

the ‘constant functions’ are.
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Alternatively, we can exten&“ to a connectiorvVg on Q! ®4 Q! and there is a dual
Vg * of the latter (see appendix B). Then

(0% ®46¢,Vg*g) =dg** — (VZ(6° ®46%), g) (5.17)
for a metricg. Since 6% is covariantly constant with respect 6°, we again obtain
dg%¢ = 0 as the metric compatibility condition.

Let Q! be the space of 1-forms of a bicovariant first-order differential calculus on a finite
group. Symmetry conditions can then be imposed on a metric as follows. For example, we
call g sssymmetricif (6(¢ ®4¢'),g) = (¢ @4 ¢, g) for all ¢, ¢’ € Q. This can also be
expressed asyg = g in terms of the transposey of o, which is determined by

(02 ®4 0%, o (U ®aly)) = (0(0% ®40%), £y ®a i)
= (0°97¢ © 4 0%, 4y ® 4 L)

_ cgsadg e _ cgog
= 8,0, = 8, Sadmyn

= (05 @4 6%, Ladimyw 4 Ln) (5.18)

ox(ly @aly) = Ladgy ®aly. (5.19)

Usingrg = Loy -1y, - €n AN L, - ey = ejg-1L, ONE findsox (€; ® 4 1g) =1y ®4 Ly Which is
the analogue of (3.1). Indeed;, inherits fromQ? the structure of a bicovariant bimodule
andoy is the corresponding braid operator.

According to the general construction in appendix C, a left (right) coactiorf2bn
induces a left (right) coaction oft’. For a left-covariant first-order differential calculus the
left coaction onX is determined by

Ax(ly) =1Q¢, (5.20)
i.e. the elements dual to the left-invariant basis 1-forisare also left-invariant. An
elementX = ¢, - X& of X is left-invariant iff X¢ € C for all g € G. The coaction extends

to XY ®4 X (see appendix C). A tensgr= £, ® 4L, -g*¢ is then left-invariant iffg¢ € C.
The above example now shows that every left-invariant metric is covariantly constant with
respect to (the extension of) the connectif.

6. Non-commutative geometry of the symmetric groupS;

We denote the elements of the symmetric grépas follows,
a=(12 b= (23 c= (13 (6.1)

ab, ba, ande (the unit element). In order to determine ti§g left-invariant differential
calculi on a set of six elements, we have to calculate the orbits of the left-acti@s arbs)’.
These are

01 ={(e,a), (a, e), (b, ba), (c, ab), (ab, c), (ba, b)}

Oy = {(e, b), (a, ab), (b, e), (c, ba), (ab, a), (ba, c)}

O3 = {(e, ¢), (a, ba), (b, ab), (c, e), (ab, b), (ba, a)}

O4 = {(e, ab), (a, b), (b, ), (c,a), (ab, ba), (ba, e)}

Os = {(e, ba), (a, ¢), (b, a), (c, D), (ab, e), (ba, ab)}.
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They are in correspondence with elementsGof {e}. Left-invariant differential calculi are
obtained by deleting subgraphs corresponding to orbits from the graph corresponding to the
universal differential calculus (which is left-invariant, of course).

With respect to left- and right-actioS; x S3)’ decomposes into two orbits

O =0,U0,U0O3 Oy =04U Os. (62)

Hence, there are two bicovariant differential calcaf, andQjj, on S; besides the universal

and the trivial one. Their graphs are obtained by deleting all arrows corresponding to
elements of9, or Oy, respectively, from the graph associated with the universal differential
calculus (see figure 2). All these graphs are symmetric in the sense that for every arrow
also the reverse arrow is present.

ab ba ab ba

€ c e C

a a

Figure 2. The graphs which determine the bicovariant first-order differential cafzhitind Qi
on S3.

The bimodule isomorphism is a non-trivial map in the case under consideration. In
terms of the decomposition into conjugacy classes

Sz ={e}U{a, b, c}U{ab, ba} (6.3)
——— N —— e’
=55 =53
it is given by

(07,0 =0" 40" Vx € S3

0 (0%,07) =0°®40" Vx,y €S, x #y,z €85\ {x,y)

U(eab’ ebu) — eba ®4 eab

(.j.(eba7 eab) — 90}7 ®_A eba

o (6%,6) = 0" @ 4 6° Vx € S§

o (6%, 0% = 9 @ 4 6* Vx € S5

o(607,6%) = 6" @407 for (x,y) € {(a,0), (b, a), (c, b))}

o (0",60%) =60" ®,60™ for (x, y) € {(a, b), (b, ¢)(c, a)} (6.4)
for the universal first-order differential calculus. Since the centigds trivial, adS3) = S3
and| ad(Ss)| = 6, so thatr'? = id according to (3.6). For the other bicovariant calculi, the
corresponding is induced in an obvious way. In the caseszffthe bimodule isomorphism
is the one of the commutative (sub)grodg. Hence,o? = id. For szj one can deduce
from (6.4) thato;? = id. For the restriction ob to the sub-bimodule o2! ® 4 Q* which is
generated byo* ® 46%, 6% ® 46*|x € S, x’ € Sy} we haves* = id. Hence 2ad(S3)| = 12
is actually the order ob for the universal first-order differential calculus, in accordance
with proposition 3.2.

1 These orbits are in correspondence with the non-trivial conjugacy classes ir. {a, b, c} and {ab, ba} (cf
section 2).
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In order to determine the most general bi-invariant linear connectiosowith the
universal first-order differential calculus, one has to determingabé-orbits in (G \ {e})3.
There are 24 of them so that bi-invariance restricts the 125 connection coefficients in (4.7)
to 24 independent constants.

6.1. Geometry of the three-dimensional bicovariant calculus

The bimoduleQ} is generated (as a lefi-module) byg¢, 6, 6¢. The operator acts on
QF ®4 Qi as follows,

c(0"®40%) =0 ®40F Vx € {a, b, c}

o0 ®@40") =0°®40" (6.5)
where, in the last equatior, is the complement of, y in ;. As already mentioned,
02 #id, buto® = id. This rules out—1 as an eigenvalue af so that all elements of
Qf ®4 Q1 are w-symmetric according to proposition 3.3. The bimodefe® 4 Qi splits
into a direct sum of sub-bimodules (cf proposition 3Q}, ® 4 Qi = kerA @ im A where
kerA is generated by* ®4 0~ for x € {a,b,c}, 6 @4 6" +0” @4 60° + 6° ®4 6% and
0° @469+ 0% ®40° 4+ 0° R4 60°. These are eigenvectors of with eigenvalue one, i.e.
s-symmetric tensors. The image®f ® 4 Qi underA is generated by? ® 46° — 6 ® 469,
09®40° —0°®460¢, 09 ® 40 —0" ® 46 andh* ® 46 —0° R 40”. These are w-antisymmetric
tensors. The space of 2-forms (following Woronowicz) is therefore four-dimensional. A
basis is given by?6?, 66¢, 66¢, #’6¢ and we have the relations
00" = —9°0> — pPoc 06" = —0"9° — 9*9¢ 00 =0 x €{a,b,c}. (6.6)

For a linear connection, there asepriori 27 connection coefficients. Bi-invariance
restricts them as follows:

Fg,a = Fg,b = FcL‘c

Fz,b = FZ,C = Fll;a = Fl[;c = Fccu = Fccb

FZA,a = F?,a = F(Ij,h = Ff,b = Fg,c = F}L)i,c

a __ta _1Tb _pb _ pc _ e
Fb,h_rc,c_ra,a_FC,C_Fa.a_Fh,b

FZ,C = ng = Fs,c = Ff,a = Féb = Fg,a' (67)
The condition of vanishing torsion for a bi-invariant connection becomes
FZA,a = FZ,b = Fz,c -1 (68)

leaving us with only three independent constants. It turns outlthat = I'*, , for bi-
invariant connections without torsion. Among these is ¢heonnection (4.22) for which
rg,=-2,1;,=-1,T;,="T; . =0. There are no bi-invariant connections for which
torsion and curvature vanish.

In the case under consideration, we h&ve= {a, b, c} = G%, G -G = {e, ab, ba} and
G-G-G = G. As a consequence, every linear connection is extensible (cf section 4). But
there are no (non-trivial) bimodule homomorphisiiis: QF — Qf @4 Qb sincegg’ ¢ G
forall g, ¢’ € G. From proposition 4.1 we infer that all linear connections have the form

Vo=pQap+V(p®ap) (6.9)
with a bimodule homomorphisriy. This includes the family (4.18), of course, which in
the case under consideration depends on three independent constants. The only linear (left
A-module) connection with righ#-linearity is given byVe = p ® 4 ¢ in accordance with
proposition A.3.
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7. Final remarks

In this work we have continued our previous research on non-commutative geometry of
discrete sets [4, 5] and, in particular, finite groups [8, 9].

Much of the material presented concerns the notion of linear connections. In [18]
a special class of linear lefd-module connections has been considered satisfying the
additional condition

Vief) =@ ®adf) + (Vo) f (7.1)

where t is an .A-bimodule homomorphism. In classical differential geometry, all linear
connections satisfy this condition with the choice of the permutation map foiThis
observation was taken in [18] to consider the above condition in non-commutative geometry.
It should be noticed, however, that connections in commutative georaatomatically
satisfy this condition whereas in non-commutative geometry it severely restricts the possible
(linear) connections, in general. It is therefore quite unclear from this point of view what the
relevance of the class of (linear) connections determined by (7.1) is. However, it has also
been pointed out in [18] that linear connections with the above property can be extended
to tensor products (oved) of 1-forms. Indeed, given connections on twiebimodules, it
seems to be impossible, in general, to build from these a connection on the tensor product
of the two modules. In particular, we would like to achieve this in order to be able to
talk about a covariantly constant metric. In appendix A we have addressed the question
of extensibility in more generality. In our attempt to solve this problem, we were led to
the condition (7.1), which we therefore called ‘extensibility condition’. This provides a
much stronger motivation for the consideration of the special class of linear connections
satisfying (7.1). We have to stress, however, that there may still be a way beyond our
ansatz to extend connections. In appendix D we briefly discussed a natural modification of
the usual definition of a linear connection which guarantees extensibility. It turned out to
be too restrictive, however.

For a bicovariant differential calculus on a Hopf algebra there is a canonical choice for
7, the canonical bimodule isomorphissn[7]. Using the fact that powers af are again
bimodule isomorphisms, one actually has a whole class of extensible linear connections
on the Hopf algebra. Similar observations have been made in [16] where, however,
the restriction to ‘generalized permutations’'which satisfysw o (zr + id) = O rules out
7 = o (together withr = (id —o)/2 which is used in [7] to extend bicovariant first-order
differential calculi on Hopf algebras to higher ordersy ff = id. The reasoning behind this
restriction (see also [19]) is not quite transparent for us and in the formalism presented in
this paper (which extends beyond finite groups) there is no natural place for it.

We should stress that extensibility conditions for connections not only arise for
non-commutative algebras, but already for commutative algebras with ‘non-commutative
differential calculi’ (where functions do not commute with 1-forms, in general), hence in
particular for differential calculi on finite sets. For finite groups we have elaborated the
extension condition for linear connections and worked out the corresponding restrictions.

The non-commutativity of a differential calculus with space of 1-forfas results
in a non-locality of the tensor product of 1-forms. This manifests itself in the fact that
components of an element ¢ Q! ® 4 Q! with respect to some (left or rightt-module)
basis of 2! do not transform in a covariant manner under a change of fbadibough
from a mathematical point of view one can hardly think of an alternative of the tensor

1 This is in contrast to the fact that other basic constructions in non-commutative geometry indeed lead to quantities
with covariant components, see section 4.
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product over the algebral, it may not be (directly) suitable for a description of physics.

It seems that some modification is needed. An example is provided by [20] where, for
a certain non-commutative differential calculus on manifolds, a modified wedge product
was constructed with the help of a linear connection, which then allowed one to read off
covariant components from (generalized) differential forms.

It is the problem just mentioned which indicates that in non-commutative geometry the
concept of a metric as an element @t ® 4 @1, respectively a dual module, may be too
naive. A departure from this concept might have crucial consequences for the relevance of
the class of extensible linear connections, of course. Further exploration of (finite) examples,
and perhaps even those presented in this work, should shed more light on these problems.

As we have seen in section 4, there are examples in the class of extensible connections
which have a geometrical meaning as analogues of(d#feparallelisms on Lie groups.

More generally, corresponding connections exist on every Hopf algebra with a bicovariant
differential calculus which is inner with a bi-invariant 1-form so in particular on the
guantum groupsGL,(n) (see also [16]). On the other hand, naturally associated with
a left-covariant differential calculus on a finite group is tfieconnection (introduced in
section 4) which is not extensible, in general.

We have developed ‘differential geometry’ on finite sets to a level which now enables
us to write down ‘geometric equations’ on discrete differential manifolds and to look for
exact solutions. Comparatively simple examples are given by the equations of vanishing
curvature or vanishing torsion for a linear connection, in which cases we presented exact
solutions. More interesting would be an analogue of Einstein’s equations, of course, but,
as mentioned above, there is still something to be understood concerning the concept of a
metric before we can seriously proceed towards this goal.
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Appendix A. Extension of connections to tensor products of bimodules

Let A be an associative unital algebfaan.4-bimodule,I'” a left 4-module, andv, V'’ left
A-module connections of and I, respectively, with respect to a first-order differential
calculus onA with space of 1-form€2®. We would like to build from these a connection
onl' @4 I, i.e. a map

Ve :T@UT = Qt@uT @4 (A1)
which is C-linear and satisfies
Vo(f(y ®av) =df ®ay @4y + fVe(y ®av") VfeAyely el (A2
In order to be well defined, the extended connection has to satisfy

Ve(yf ®av) =Vely ®4 fv). (A.3)
Let us consider the ansatz
Ve =@ o (VQidr) + W o (idr V') (A.4)

with linear maps
ST U > QT @
Uil it > QP eI,
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In the following we evaluate the conditions which the extended connection has to satisfy.
These restrict the possibilities for the mapsand w. From (A.3) we obtain the following
condition:

V(y @adf ®@ay) =2V — (V) f1®av). (A5)
(A.2) leads to
0=PAf @y ®ay)—df @y @y +O(fVy @4y

—fO(Vy @ay)+W(fy ®aVy) — f¥(y ®@aV'y). (A.6)
If we demand® and ¥ to be left.4-linear, then the last equation implies

® =idy: ® idr ® id (A7)
and (A.5) reduces to

¥ =Vy ®idr (A.8)
with a mapWy : I' @4 Q! - Q' @4 ' such that

Uy(y @adf) =V —(Vy)f VieAyel. (A.9)

If we could turn this into a definition, we would have a universal solution to the problem
we started with, the extension of connections on two bimodules to the tensor product (over
A)f. As a consequence of our assumptiolis, is defined onl” ® 4 Q*, but the right-hand

side of (A.9) must not respect that. This means that, depending on the chosen differential
calculus on4, (A.9) is only well defined for a special class of connectionson

Definition A connectionV : I' — Q! ®4 I is calledextensible if it defines a map¥y
via (A.9).

Restrictions arise as follows. A relation /; dfi = 0 in Qt implies > [V(yh fi) —
V(yhy) fi] = 0. If Q1 is the space of 1-forms of the universal first-order differential calculus
on A, there are no relations of the forin 7, df, = 0 and therefore every connection is
extensible.

Lemma A.1 For an extensible connectioWy is an.A-bimodule homomorphism.
Proof.
Wy(hy ®adf) =V(hyf)—V(hy)f
=dh @4 (yf) +hV(yf) —([dh@ay)f — (hVy)f
=h[Vyf) = (V¥ f]
=hUyv(y ®4df)
Wy (y @4 (Af)h) = Wy(y @4 d(fh)) — Uv(y ®4 fdh)
=[Vf) = (Y flh
= Wy(y ®4df)h
for all f,h € A. O
What we have shown so far is summarized in the following proposition.

1 Here and in the following we shall assume that the tensor productéigrero divisor free. (As an example, the
tensor product over of elements o, with rational numbers always vanishes). If we do not make this assumption,
there are additional consistency conditions for the connedfignLet I'p :={y € |y ® 4y’ = 0¥y’ € I'"} and

I'y defined correspondingly. Then we have to ensure #ag C Ql @4 o and V'Ty C Qley I'o.

i In the notation of [21] an extensible connection is a ‘bimodule connection’.
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Proposition A.1 For left.A-module connection¥, V' on A-bimodulesI’, I'" (with respect

to a first-order differential calculus aA) there exists a connection dh® 4 I'” of the form
Ve = ® o (VQidr) + Vo (idr ®V') (A.10)

with left .A-module homomorphism® andW if and only if V is extensible. The connection
is then unique and given by

V@ =V ® idrf +(‘~I’V ® idr/) e} (ldr‘ ®V,) (All)
with the A-bimodule homomorphisnd’y defined via (A.9).

If V:I - Q'®4T is an extensible connection on attbimodulel’, a connection on
the n-fold tensor product™” of T (over A) is inductively defined via

Ve i=V Q@ idpi1 +(Wy @ idpa1) o (idr @V*™D). (A.12)

For an extensible connection we simply regard (A.9) as the definitiobiyof If, however,

we choose some bimodule homomorphism ¢ on the left-hand side of (A.9), then

this imposes further constraints on the connection. Corresponding examples appeared in
[18,19].

Proposition A.2 Let A be an associative algebra ang?, d) a first-order differential
calculus onA4 which is inner, i.e. there is a 1-form such that ¢ = [p, f] (Vf € A). Let
o Qe - Q4 Q! be a bimodule homomorphism
A linear connection is then extensible if and only if there exist bimodule homomorphisms
Vit 0l - Qe ot Wil Qle, @l (A.13)
such that
Vo=V7p+V(p®ap)+ W(p) (A.14)
whereV? denotes the linear connection associatetith o, defined byVogp := p ® 4 ¢ —
o (9 ®4p).

Proof. ‘=’. For an extensibleV there is a bimodule homomorphiswy, : Q! ® 4 Q! —
Q' ® 4 Q! such thatV(pf) = (Vo) f + Yyv(p ®4 df). Then

V7 = p®@sp— Uvlp ®ap)

defines a linear connection and the differefiée= V — V¥ is a bimodule homomorphism.
With the bimodule homomorphis¥i := o — Wy we obtain the decomposition (A.14).
‘<’. Assuming that (A.14) holds, we get

Vipf) = (Vo) f =V (ef) = (Vo) f + V(pf Qup) = V(e ®ap)f
= (0 —V)(p®44df).

SinceVy := ¢ — V is a bimodule homomorphisny, is extensible. |

We should stress the following. The notion of extensibility of a connection is based on
the ansatz (A.4). We cannot exclude yet that there is a (more complicated) recipe to extend
connections to the tensor product of the modules on which they live, without imposing
restrictions on the connections. We have tried out several modifications of (A.4) without
success.

1 A possible choice i = 0.
i See also [16].
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In [14] a class of left4-module connections on a bimodule has been considered with
additional rightA-linearity. This is a subclass of extensible connections. For an algébra
with an inner first-order differential calculus, there always exists one particular connection
of this kind, thecanonical (left.4-module) connectionvhich is given byVg = p ® 4 ¢. A
complete characterization of such connections is obtained in the following proposition.

Proposition A.3 Let A be an associative algebra ang?!, d) a first-order differential
calculus onA which is inner (with a 1-formp). Then every leftA-module connection
which is also a right4-module homomorphism has the form

Vo=p®4s0+ W(p) Vo e QF (A.15)
with a bimodule homomorphisriv.

Proof. A left A-module connection with the rightl-module homomorphism property
V(pf) = (Ve)f is a special case of an extensible connection (with = 0).
Proposition A.2 then tells us thaly = p @4 ¢ + V(e ®4 p) + W(p) with bimodule
homomorphisms/ and W. The difference of two left4-module connections with right
A-linearity must be and-bimodule homomorphisrm! — Q' ® 4 Q*. A simple calculation
using df = [p, f] then shows tha¥ has to vanish. |

The constraint imposed by (A.15) on a connection is very restrictive. In section 6.1 we
have an example where the canonical léftnodule connection turns out to be the only left
A-module connection with righ#-linearity. Further examples are provided by bicovariant
first-order differential calculi on the quantum groupd,(n)f. In this case it has been
shown [16] that there is no non-vanishing bimodule homomorphism- Q! ® 4 QL. All
these calculi are inner [7] (with a 1-forp). Hence, the canonical connecti®y = p® 4 ¢
is the only left.4-module connection with right-linearity according to proposition A.3.

Appendix B. Connections and their duals

Let A be an associative algebra afdan .A-bimodule. There are two natural ways to
define adual of I", depending on whether its elements act from the left or from the right on
elements of". Here we make the latter choice (see the remark at the end of this section).
For the duality contractiotiy, 1) wherey € I' andu € T'* (the dual ofl"), we then have

(fy.m) = fly.n) vonf) =y, u) f (vfim)=(y, fu) (B.1)

for all f € A. For a left A-module connection oi” (with respect to some first-order
differential calculus o4 with space of 1-form?) its dual is a mapv* : I'* — I'*® 4 Q!
defined by
(v, Viu) == d{y, u) — (Vy, ) (B.2)
where (y, u ®4 ¢) = (y, n)p and (¢ @4 y, 1) = ¢{y, n). With these definitions we
obtain
(v, V¥(f)) = dly, uf) = (Vy, nf)
= (d{y, u) f + v, )df = (Vy, ) f
=y, V' f+{r,n®adf) (B.3)

t The authors of [14] call such connectidet connections Furthermore, a ‘connection on a bimodule’ is defined
in [14] as a pair of left and right connections.

I A classification of bicovariant differential calculi on the quantum general linear gr@uigsn) has been obtained
in [22].
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and therefore

Vi) = (V' f+pn@adf (B.4)

which shows thatv* is a right.A-module connection. For an extensible connection (see
appendix A) we now have the following result.

Proposition B.1 If V : ' — Q! ®4 I' is an extensible connection with bimodule
homomorphismy, then V* is an extensible connection with bimodule homomorphism
Uyt Q@4 T — ' @4 QF given by

(¥, Wy (@ @4 ) := (Wv(y ®a9), ). (B.5)

Proof. It is easily checked tha®y- is well defined via (B.5) and that it is a bimodule
homomorphism. We still have to verify thdty. satisfies the counterpart of (A.9) for a
right .A-module connection,

(v, VIUf) — Vi) = (v, V() — (v fo Vi)
=d(y, fu) = (Vy, fu) —dyf, n) + (V). w)
= (V) = (V) fin) = (Wv(y ®adf), u).
O
Let IV be a leftA-module andV’ : I" — Q! ® 4 IV a connection on it. Its dudl’* is
a right A-module andv”™ : I'* — I'’* @ 4 Q! defined as above is a connection Bfi. In
case we have oh an extensible lefid-module connection with a bimodule homomorphism
Wy, we can define a connectiofiy on I' ® 4 I in terms of the connections dn and I’
(see appendix A). In the following we have to assume that the dual modulexof I'’ is
isomorphic tol'* ® 4 I'*. This holds in particular for modules of finite rank. The duality
contraction is then given by
(y®ay . vean) =y, v),u. (B.6)

Now we have two different ways to define a connectionfoh® 4 I'*, either as the dual of
Vg, I.€.

(¥ ®ay', (Vo) w@a ) =y ®ay',v®an) — (Vo(y ®ay), v ®anu) (B.7)
or as the ‘tensor product’ of the dua¥s* and V'™, i.e.
(Ve (v ®ap) 1= (idr @Wy ) (Vv @4 ) +v ®4 Vi (B.8)

Fortunately, both procedures lead to the same connectidri*oR 4 I'*.
Proposition B.2
(Vg)* = (Vg =1 Vg. (B.9)
Proof. Using
(y @47/, (idr @W3) (Vv @4 1)) = (Wy(y @4 (y', V'), w)
and
(W(y @4 (V'Y v), w) = (¥ ®@idr)(y ®4V'y), v @4 1)
a direct calculation shows that
(y®ar', (V) 0 @apn) — (VHg(v®apn) =0.
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Remark Our choice among the two possible duals Ibfis related to our use ofeft
A-module connections. Let us consider the alternative, the left Duaith contraction
(', y)'1. Then, in the expressiofu’, Vy)' the 1-form factor ofVy cannot be pulled out

of the contraction so that there is no (natural) way to define a dual of adleftodule
connection. There is an exception, however. In the special case of a linear connection,
wherel" = Q!, we may indeed define a dual connect®@hon the dual spacd” of Q! via
(V'X', o) =d(X', p) — (X', Vo). ThenV' is a left. A-module connection. We emphasized
earlier that, for a linear connectidd! — Q! ® 4 Q, the twoQ!-factors of the target space
play very different roles. S&’ should only be taken seriously if there is a good reason to
forget about this fact. Of course, if we considight instead of leftA-module connections,
the correct contraction should be the primed one.

Appendix C. Coactions and extensions of invariant connections

Let A be a Hopf algebra with unit 1 and coprodust I' an .A-bimodule andI™ a left
A-module.T andI” are also assumed to be leftcomodules with coactioris

Ar:T - A®T Ar()/)=2fk®)/k
%

(C.1)
Ar TV —> AQTY Ar’()//)ZZfl/@Vl/-
1
A left coaction on the tensor produEt® 4 I'" is then given by
Argr(y ®av) =Y fi]l ® i ®av/ (C.2)
k,l

(see [7], for example). In the frequently used Sweedler notation [23], this reads
Arg,r(y ®47) = VY1) ® Yo ®4 V) (C.3)

where Ar(y) = y-1 ® v0-
Let (1, d) be a left-covariant first-order differential calculus ohandV : I' —
Q' ®4 T a left A-module connectionV is calledleft-invariant if

Agig,ro V= (ld®V)o Ar (C.9)

where Aqig 1 is the left coaction om! ® 4 I' induced by the left coactions aR! andT.
As a consequence of this definition,)fe I is left-invariant (i.e.Ar(y) = 1® y) and if
alsoV is left-invariant, therVy is left-invariant, i.e.Aqig rVy =1® Vy.

Proposition C.1 Let A be a Hopf algebraQ?! a left-covariant differential calculus a#,

I' an A-bimodule and left4-comodule with a left-invariant extensible connectién Then
the associated bimodule homomorphisna : I' ® 4 Q! — Q' @4 I' is also left-invariant,
ie.

Aqig,r o Yy = (Id®W¥y) o Arg a1 (C.5)

1 It still has to be clarified whether the two duald} andI"" are isomorphic in some (natural) sense.
I In the following it will be sufficient to consider a left coaction as a linear map—~ A ® I' such that
Ar(fy) = A(f)Ar(y). We will need a refinement in proposition C.4 below, see the next footnote.
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Proof. Since all maps ar€-linear, it suffices to check the invariance condition on elements
of the formy ® 4 df with y e I and f € A:

Agig,r o Wy (y ®4df) = Aqig,r (V(yf) — (V) f)
= (d®V) o Ar(yf) — (Id®V) o Ar(y)A(f)
= (d®V)(Ar(»)A(f)) — ((Id®V) o Ar(y) A(f)
=vnfa ® [Vvo f) — Vo) fz]
= (Id®W¥y) o (V-1 fin) ® Y0 ®adf2)
= (I[d®Vy) o Arg,o1(y ®4df).

O

Proposition C.2 Let A be a Hopf algebraQ! a left-covariant differential calculus oA,
andT, I'" two A-bimodules which are also leftl-comodules. Letv, V' be left-invariant
connections onl’ and I'’, respectively. IfV is extensible (with associated bimodule
homomorphismy), then the product connectiovig given by (A.11) is a left-invariant
connection ol ® 4 I'.

Proof.

Agig,re,r © Ve(y ®4 ) = Aqigmeir (VY ®47)
+A@ig,rea © (Wy @id)(y ®4 V'y")
= ([d®V®id) o Arg,r(y ®4¥")
+({d Wy ®id) 0 Arg ,@ie (¥ ®4 V'Y
= ([d®V®id) o Arg,r(y ®4¥")
+({d@Wy ®id) o ((d®iId®V’) 0 Arg,r (¥ ®4¥")
= (i[d®Vg) o Arg,r (¥ ®4 7).

O

Proposition C.3 Let A be a Hopf algebra andQ?!,d) a left-covariant (first-order)
differential calculus on4 which is inner, i.e. there is a 1-form such that ¢ = [p, f]
for all f € A. Let p be left-invariant andl : Q' @ 4 Q! — Q! @4 Q! an .4-bimodule
homomorphism so that

VY% =p Q49— V(p®4p) (C.6)
defines a linear connection. Th&# is left-invariant if and only if¥ is left-invariant.

Proof. ‘=’. The connectionv¥ is extensible and we hawe = Wy. HenceV is left-
invariant according to proposition C.2.
‘<. If W is left-invariant, then als&"¥ since

Agigui 0 VY0 = Agig,0i(p ®4 9) — (d®W) 0 Agig 19 @4 p)
=91 ® P ®apo — (dRV) (91 ® 90 @4 P)
=91 ® V0
= (d®V"Y) 0 Agi(9).
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Let us now consider twod-bimodulesr, I'” with right coactions

rATS>TRA AW =) n® fi
k

(C.7)
rAT - T'® A rA®Y) = E V1/®fz/-
1

Then

rour A ®aY) =) e ®av ® fiuf] (C.8)
k,l

defines a right coaction ol ® 4 I'".
Let (21, d) be aright-covariant first-order differential calculus of. If an .A-bimodule
I has a right coactiopA : T' — ' ® A, thenright-invarianceof a connectiorV is defined

by
Ql@AFAOV:(V(gid)OFA (Cg)

wheregig,r A is the right coaction o' ® 4 I' induced by the right coactions al' and
I". With these notions, the last three propositions in this section remain valid if ‘left’ is
everywhere replaced by ‘right’ (with the exception that we still consider Jeftnodule
connections).

In the following we demonstrate that invariance properties of connections are also
transfered to their duals. First we establish the existence of a left coaction on the dual of a
bimodule with a left coaction.

Proposition C.4 Let A be a Hopf algebra anfi a left-covariant bimodule oved with
coactionArt. Then the dual modulE* has a unique left-covariant bimodule structure with
coactionAr« : I'* - A ® I'* such that

(|d ®(9 )) o AF®AF* =Ao <a ) (ClO)
where(, ) denotes the contraction mappihgR 4 ['* — A.

Proof. According to theorem 2.1 in [7] a left-covariant bimodutehas a leftA-module
basis of left-invariant elementg/’} (wherei runs through some index set). Lft;} be
the dual basis of *. Assuming the existence @, (C.10) leads tqt;—1, ® (¥', 1j) =
8_j]l®ll which impliesp;—1) € C. Now (e®id)oAr = id shows that the:; are left-invariant,
i.e. Ap-(nj) = 1® uj. As a consequence, the coaction is unique.

Let us now prove the existence of the coactionltn According to theorem 2.1 in [7]
there are map#”; : 4 — A such that

yif=) FilhHyt AFN)) =MdRF VA  VfeA
k

Then
V) = fow) =) FR(HWE ) = Fl(f)

k

=Y L wd P () = 0L ) mF ()
k k

T A left-covariant bimodule over a Hopf algebrd is an .A-bimodule I' together with a map (coaction)
Ar : ' > A®T such thatAr(fyf') = A(f)Ar(y)A(Sf') forall f, f' € A,y € T. It has to satisfy the
equationg A ® id) o Ar = (id®Ar) o Ar and(e ® id) o Ar = id wheree is the counit. See also [7].
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implies fu; = >, mF*;(f). Now we define the coactiomr: on the basisu; by
Ar-(nj) '=1® p; and extend it viaAr-(u; f) := Ar-(u;) A(f) for all f € A. Then

Ar-(fu)) = Ar*(?Mkaj(fO
- ; Ar () ACFY; ()
- ;(m ® w)(id ® F*))A(f)
= Xk: fa ® ki (f)
= zk: oy ® fou;

= A(H)Ar(u)).

It is now sufficient to verify the remaining defining properties of a left-covariant bimodule
on the left-invariant basis elements, and furthermore (C.10) ofy'} and{u;}. We leave
this to the reader. O

After some preparations in the following Lemma, we prove that left-invariance of a
connection on a left-covariant bimodule translates to invariance of the dual connection
which lives on the dual left-covariant bimodule.

Lemma C.1

(id®(,)) o Arg,rg, (¥ ®4 ) = Agi(y, i) VieTl* ®4 Q" (C.11)
(d®(,)) 0 Aqig,re,r (Y ®an) = Aqr(y, w) VP e Q' @uT. (C.12)
Proof. This is a straightforward calculation using (C.10). |

Proposition C.5 Let.4 be a Hopf algebral, a left-covariant bimodule oved and (2%, d)
a left-covariant first-order differential calculus oh If V: ' — Q' ® 4T is left-invariant,
then the dual connectio¥* : I'* — I'* ® 4 Q* is also left-invariant.

Proof. We have to show that
Arsg 01 © V= (d®V*) o Ars.

Let {y'} be a left-invariant left.A-module basis ofl" [7]. We introduce mappings
C:T*uQ = QY u®4¢— (¥, we. Then
(id @C)(Id @V Ar (1) = 1) ® (v, Vi)
= puecy [y, no) — (Vv', no)]
=[(id@d) o (id®(,)) — (d®(,)) o (dQV ®id)] 0 Arg,r-(y' @4 1)
= (id®d) o A(y', u) — (d®(,)) 0 Agig,re,r o (VQId) (¥ ®4 1)
= Aqr(d(y’, i) — (Vy', 1))
= Aai(y’, Vi)
= (d®(,)) o Arg,rg (¥ ®4 Vi)
= (V') ® (', (V')
= (d®C") 0 Ap-g a1 (V1)
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using the left-invariance o¥y’ and lemma C.1 It remains to show th@d ®C?)(£) = 0
for all i impliesé = 0 (where§ € A® I'* ® 4 Q1). £ has an expression

‘i: = Z fa 02y M A @réajr

a.j.r

with &, € A. Here{u;} is the basis of™* dual to{y'} and{¢,} is a right.A-module basis
of Q1. Evaluation of(id @C?)(¢) = 0 now leads toy ", fo ® &vir = 0 for all i and allr.
Hence¢ = 0. O

Corresponding results are obtained for a right-covariant bimobuhdgth coactionr A
and right-invariant connections on it. In this case (C.10) is replaced by

(<, ) ® |d) o F®AF*A =Ao (, > (C13)

Appendix D. Two-sided connections

The problem of extensibility of a connection discussed in appendix A disappears if we
modify its definition as follows.

Definition A two-sided connectionon an.A-bimodulel’ isa mapV : ' — (Q'®@4) ®
(' ®4 QY such that

VUfvf)=df @avf + fr@adf + f(VV) [ (D.1)
forall f, f'e Aandy eT.

The difference of two such connections is a bimodule homomorphism. The following
example demonstrates that the concept of a two-sided connection is much more restrictive
than that of the usual one.

Example For a first-order differential calculus which is inner, i.e. there is a 1-fpreuch
that df = [p, f] for all f € A,

Vo '=p@ap—¢Qup (D.2)

defines a two-sided linear connection. In the particular case of the three-dimensional
bicovariant differential calculus oSz, we observed in section 6 that there is no non-trivial
bimodule homomorphisre! — Q!'® 4 Q!. Hence, the two-sided connection defined above

is the only one in this case.

A two-sided connection extends to a m@mR 44 2 —> Q4 ®4 Q via
Vipye) = (dp)ye' + (=" (Vy)e' + (=1 pydy’ (D.3)

wheregp € Q" andy € @;_o 2 ®4T ®4 2. The curvature oV then turns out to be
an A-bimodule homomorphism, i.e.

VA(frf) = FOV) Vf, ffe A yerl (D.4)
a nice property not shared, in general, by ordinary connections.

T See also [21, 24] for related structures.



2732 K Bresser et al
Appendix E. Invariant tensor fields on a finite group

From two.A-bimodulesl” andI™” we can build the tensor produEt® 4 I'’. If both modules

carry a (left or right).A-comodule structure, there is a comodule structure on the tensor
product space (see appendix C). In case of left comodules, the left-invariance condition for
atensor fieldr € T'®@4I" readsArg,r (o) = I®a. For right comodules this is replaced by

the right-invariance conditiopg . A () = «®1. In the following we consider a bicovariant
(first-order) differential calculus on a finite group. Besides being amd-bimodule, the
spaceQ! is then a left and right4d-comodule. Each tensor field € Q' ® 4 Q' can be
written as

o=, 05 @408 (E.1)
8.8

where summations run over the $gt= {g € G|#8 #£ 0}. Left-invariance ofe then means
o, o € C. Bi-invariance leads to the additional condition

a&gea‘*m& ® 4 6748 — 005 @ o€ Vh e G. (E.2)
For fixedh € G, the map ath) : G — G is a bijection. Hence
%gmwg®Am“@=amwmmww¢®A¢' (E.3)

and the bi-invariance condition becomes
Qadhyg,adhyy = tg.g € C Vg, g € é, hegG. (E.4)

For a bicovariant differential calculus with bimodule isomorphisimthe condition for a
tensor fielda to be s-symmetric is

Qg = Uy adg)g Vg, g €G. (E.5)
a is s-antisymmetric iff
Ug o = —0g adg)g Vg, g €G. (E.6)
Example Let us considerS; with the universal (first-order) differential calculus (see
section 6). In matrix notation, the coefficients of an s-symmetric tensordieés given by
(E.1), must have the form
a1 g a5 P P
as oz og B3 P1
(dgg)=]0as as az P2 B3 (E.7)
B2 P B3 »n s
Br Bs B2 vz »2
where the entries are (arbitrary) elements 4f (respectively constants it is left-

invariant). Rows and columns are arranged, respectively, according to the index sequence
{a, b, ¢, ab, ba}. For an s-antisymmetric tensor field we obtain

0 0 0 B B
0 0 0 B B
(ag.q) = 0 0 0 B Bs|- (E.8)
B2 —pP1 =Bz 0 y
—B1 =B —B2 -y O

For a w-symmetric tensor field we find

o os as P11 By
o7 o as BY B

(2g.¢) = og Qo az B3 By (E.9)
By — By + B3 B2 5 on s

2
Br—B2+B3s B —B5+B5 B, v3 ¥
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and the coefficients of a w-antisymmetric tensor field are given by

0 oy —az—as P1 Py
a3 0 o2 1/ ﬂ3

(g o) = —a1 — o g 0 By By |- (E.10)
—B1—Bs— B B2 J 0 vy

2
—p1—PB2—PB3s =P —B3— B3 B, -y O
a is bi-invariant iff the coefficient matrix has the form

a o o B B 0 0 o B g
@ a o B B 0 0 o g g
(ageg)=]ca" o a B B|+] O 0 0 g g | (E11)
B B B v VvV - - -p 0 O
B B B Vv v - - -p 0 O
with constants, o', 8, B, v, y’. As expressed above, it turns out to be a sum of s-symmetric

and s-antisymmetric tensors.

Appendix F. Finite group actions on a finite set

Within the framework of non-commutative geometry of finite sets one can also formulate
the notion of covariance with respect to a group action on a finite setMLet{x, y, ...}
be this set ands a finite group acting o/ from the left,

GxM-—>M (g, x)—~> g-x. (F.1)

Forg, g € G andx € M we have(gg’) -x = g- (¢’ - x). The action of the neutral element
e € G is trivial, i.e.e-x = x for all x € M. We denote the algebra &f-valued functions
on M and G by H and A, respectively. A is a Hopf algebra ove€. The group action
induces deft coactionAy : H —> A® H via

An(f)(g,x) = f(g-x). (F.2)
Since Ay is compatible with the multiplication i, the latter is turned into a (leftd-
comodule algebraln particular,

AH(ex) = Zeg ® eg—l.x. (F3)

geG

A (first-order) differential calculus o/ (or H) with space of 1-forms2! is called G-
covariantiff there is a linear map\q: : Q! — A ® Q! such that

Aqi(foh) = Ay (f)Aai(p) Ay (h) VieAheH (F.4)
and
Agrod = (id®d) o Ay. (F.5)
As a consequence,
Agi(ey,y) = Z €1 ® Cgx gy (F.6)
g€G

We obtain all G-covariant differential calculi on by deleting sets of arrows from the
universal graph (the digraph which corresponds to the universal differential calculd3.on
These correspond t6-orbits in (M x M)’. A (non-trivial) G-covariant differential calculus
is calledirreducible if it belongs to a single orbit. All (non-trivial) differential calculi are
then obtained as unions of irreducible ones.
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Example 1 Let M be a finite set withn elements ands = S,, the symmetric group.
Obviously, the action oF, on (M x M)’ is transitive, i.e. al(x, y) wherex # y belong to
the sameS,-orbit. Therefore, the onlys,-covariant (first-order) differential calculi o
are the universal and the trivial one.

Example 2 Instead of the action of the whole symmetric group we may consider actions
of subgroups ofS,. Forn = 3, for example, we have the (hon-trivial) subgroups

Gi1={e,a} Gy ={e, b} Gz =le,c} G4 = e, ab, ba)}. (F.7)

Denoting the points oM by 1, 2, 3, we can calculate the orbits {4 x M)’. For the action
of G1, we obtain

0:={1,2), (2 1)} 0,=1{1,3), (2 3} 03 ={3B, 1,3 2} (F.8)
The graphs which determine the irreducible calculi are depicted in figure F1.
3
A VWA VAN

Figure F1. The digraphs coresponding to the irreduciléle-covariant first-order differential
calculi on a 3-point set.

In the case ofG4 acting onM we obtain
0:={1,2),(2,3), 3 1} 0,=1{1,3),(21), 3 2)}. (F.9)
The graphs corresponding to irreducible calculi are displayed in figure F2.

VANV AN

* e g @ c———

Figure F2. The digraphs corresponding to the irreducildlg-covariant first-order differential
calculi on a 3-point set.

Of course, one can proceed with the formalism by defining invariance of tensors and
connections oM. All this will be explored in detail in a separate work.
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